Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
PeerJ ; 7: e8074, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31799073

RESUMO

Measurement of the apparent conductivity of salt marsh sediments using electromagnetic induction (EMI) is a rapid alternative to traditional methods of salinity determination that can be used to map soil salinity across a marsh surface. Soil salinity measures can provide information about marsh processes, since salinity is important in determining the structure and function of tidally influenced marsh communities. While EMI has been shown to accurately reflect salinity to a specified depth, more information is needed on the potential for spatial and temporal variability in apparent conductivity measures that may impact the interpretation of salinity data. In this study we mapped soil salinity at two salt marshes in the Narragansett Bay, RI estuary monthly over the course of several years to examine spatial and temporal trends in marsh salinity. Mean monthly calculated salinity was 25.8 ± 5.5 ppt at Narrow River marsh (NAR), located near the mouth of the Bay, and 17.7 ± 5.3 ppt at Passeonkquis marsh (PAS) located in the upper Bay. Salinity varied seasonally with both marshes, showing the lowest values (16.3 and 8.3 ppt, respectively) in April and highest values (35.4 and 26.2 ppt, respectively) in August. Contour plots of calculated salinities showed that while the mean whole-marsh calculated salinity at both sites changed over time, within-marsh patterns of higher versus lower salinity were maintained at NAR but changed over time at PAS. Calculated salinity was significantly negatively correlated with elevation at NAR during a sub-set of 12 sample events, but not at PAS. Best-supported linear regression models for both sites included one-month and 6-month cumulative rainfall, and tide state as potential factors driving observed changes in calculated salinity. Mapping apparent conductivity of salt marsh sediments may be useful both identifying within-marsh micro-habitats, and documenting marsh-wide changes in salinity over time.

2.
Ecosphere ; 9(8): e02329, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30505615

RESUMO

In a whole-ecosystem, nutrient addition experiment in the Plum Island Sound Estuary (Massachusetts), we tested the effects of nitrogen enrichment on the carbon and nitrogen contents, respiration, and strength of marsh soils. We measured soil shear strength within and across vegetation zones. We found significantly higher soil percent organic matter, carbon, and nitrogen in the long-term enriched marshes and higher soil respiration rates with longer duration of enrichment. The soil strength was similar in magnitude across depths and vegetation zones in the reference creeks, but showed signs of significant nutrient-mediated alteration in enriched creeks where shear strength at rooting depths of the low marsh-high marsh interface zone was significantly lower than at the sub-rooting depths or in the creek bank vegetation zone. To more closely examine the soil strength of the rooting (10-30 cm) and sub-rooting (40-60 cm) depths in the interface and creek bank vegetation zones, we calculated a vertical shear strength differential between these depths. We found significantly lower differentials in shear strength (rooting depth < sub-rooting depths) in the enriched creeks and in the interface zones. The discontinuities in the vertical and horizontal shear strength across the enriched marshes may contribute to observed fracturing and slumping occurring in the marsh systems. Tide gauge data also showed a pattern of rapid sea level rise for the period of the study, and changes in plant distribution patterns were indicative of increased flooding. Longer exposure times to nutrient-enriched waters and increased hydraulic energy associated with sea level rise may exacerbate creek bank sloughing. Additional research is needed, however, to better understand the interactions of nutrient enrichment and sea level rise on soil shear strength and stability of tidal salt marshes.

3.
Front Mar Sci ; 5(43): 1-15, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29552559

RESUMO

Coastal ecosystems are inherently complex and potentially adaptive as they respond to changes in nutrient loads and climate. We documented the role that carbon stable isotope (δ13C) measurements could play in understanding that adaptation with a series of three Ecostat (i.e., continuous culture) experiments. We quantified linkages among δ13C, nutrients, carbonate chemistry, primary, and secondary production in temperate estuarine waters. Experimental culture vessels (9.1 L) containing 33% whole and 67% filtered (0.2 µm) seawater were amended with dissolved inorganic nitrogen (N) and phosphorous (P) in low (3 vessels; 5 µM N, 0.3 µM P), moderate (3 vessels; 25 µM N, 1.6 µM P), and high amounts (3 vessels; 50 µM N, 3.1 µM P). The parameters necessary to calculate carbonate chemistry, chlorophyll-a concentrations, and particulate δ13C values were measured throughout the 14 day experiments. Outflow lines from the experimental vessels fed 250 ml containers seeded with juvenile blue mussels (Mytilus edulis). Mussel subsamples were harvested on days 0, 7, and 14 and their tissues were analyzed for δ13C values. We consistently observed that particulate δ13C values were positively correlated with chlorophyll-a, carbonate chemistry, and to changes in the ratio of bicarbonate to dissolved carbon dioxide ( [Formula: see text] :CO2). While the relative proportion of [Formula: see text] to CO2 increased over the 14 days, concentrations of each declined, reflecting the drawdown of carbon associated with enhanced production. Plankton δ13C values, like chlorophyll-a concentrations, increased over the course of each experiment, with the greatest increases in the moderate and high treatments. Trends in δ13C over time were also observed in the mussel tissues. Despite ecological variability and different plankton abundances the experiments consistently demonstrated how δ13C values in primary producers and consumers reflected nutrient availability, via its impact on carbonate chemistry. We applied a series of mixed-effects models to observational data from Narragansett Bay and the model that included in situ δ13C and percent organic matter was the best predictor of [ [Formula: see text]]. In temperate, plankton-dominated estuaries, δ13C values in plankton and filter feeders reflect net productivity and are a valuable tool to understand the production conditions under which the base of the food chain was formed.

4.
Environ Toxicol Chem ; 36(2): 449-462, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27442751

RESUMO

Greenwich Bay is an urbanized embayment of Narragansett Bay potentially impacted by multiple stressors. The present study identified the important stressors affecting Greenwich Bay benthic fauna. First, existing data and information were used to confirm that the waterbody was impaired. Second, the presence of source, stressor, and effect were established. Then linkages between source, stressor, and effect were developed. This allows identification of probable stressors adversely affecting the waterbody. Three pollutant categories were assessed: chemicals, nutrients, and suspended sediments. This weight of evidence approach indicated that Greenwich Bay was primarily impacted by eutrophication-related stressors. The sediments of Greenwich Bay were carbon enriched and low dissolved oxygen concentrations were commonly seen, especially in the western portions of Greenwich Bay. The benthic community was depauperate, as would be expected under oxygen stress. Although our analysis indicated that contaminant loads in Greenwich Bay were at concentrations where adverse effects might be expected, no toxicity was observed, as a result of high levels of organic carbon in these sediments reducing contaminant bioavailability. Our analysis also indicated that suspended sediment impacts were likely nonexistent for much of the Bay. This analysis demonstrates that the diagnostic procedure was useful to organize and assess the potential stressors impacting the ecological well-being of Greenwich Bay. This diagnostic procedure is useful for management of waterbodies impacted by multiple stressors. Environ Toxicol Chem 2017;36:449-462. © 2016 SETAC.


Assuntos
Baías/química , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Invertebrados/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Eutrofização , Sedimentos Geológicos/análise , Rhode Island , Urbanização , Poluentes Químicos da Água/análise
5.
Ecol Appl ; 24(4): 633-49, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24988765

RESUMO

Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing at an average rate of 13 ha/yr, and multiple stressors (e.g., wastewater inputs, dredging activities, groundwater removal, and global warming) may be contributing to marsh losses. Among these stressors, wastewater nutrients are suspected to be an important contributing cause of marsh deterioration. We used census data, radiometric dating, stable nitrogen isotopes, and soil surveys to examine the temporal relationships between human population growth and soil nitrogen; and we evaluated soil structure with computer-aided tomography, surface elevation and sediment accretion trends, carbon dioxide emissions, and soil shear strength to examine differences among disappearing (Black Bank and Big Egg) and stable marshes (JoCo). Radiometric dating and nitrogen isotope analyses suggested a rapid increase in human wastewater nutrients beginning in the late 1840s, and a tapering off beginning in the 1930s when wastewater treatment plants (WWTPs) were first installed. Current WWTPs nutrient loads to Jamaica Bay are approximately 13 995 kg N/d and 2767 kg P/d. At Black Bank, the biomass and abundance of roots and rhizomes and percentage of organic matter on soil were significantly lower, rhizomes larger in diameter, carbon dioxide emission rates and peat particle density significantly greater, and soil strength significantly lower compared to the stable JoCo Marsh, suggesting Black Bank has elevated decomposition rates, more decomposed peat, and highly waterlogged peat. Despite these differences, the rates of accretion and surface elevation change were similar for both marshes, and the rates of elevation change approximated the long-term relative rate of sea level rise estimated from tide gauge data at nearby Sandy Hook, New Jersey. We hypothesize that Black Bank marsh kept pace with sea level rise by the accretion of material on the marsh surface, and the maintenance of soil volume through production of larger diameter rhizomes and swelling (dilation) of waterlogged peat. JoCo Marsh kept pace with sea-level rise through surface accretion and soil organic matter accumulation. Understanding the effects of multiple stressors, including nutrient enrichment, on soil structure, organic matter accumulation, and elevation change will better inform management decisions aimed at maintaining and restoring coastal marshes.


Assuntos
Conservação dos Recursos Naturais , Estuários , Nitrogênio/química , Solo/química , Animais , Cidades , New York , Poaceae/crescimento & desenvolvimento
6.
Integr Environ Assess Manag ; 8(4): 685-702, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22447411

RESUMO

Diagnosing the causes of impaired ecosystems in the marine environment is critical for effective management action. When ecological impairment is based on toxicological or biological criteria (i.e., degraded benthic community composition or toxicity test results), managers are faced with the additional problem of diagnosing the cause of impairment before plans can be initiated to reduce the pollutant loading. We evaluated a number of diagnostic tools to determine their ability to identify pollutants in New Bedford Harbor (NBH), Massachusetts (USA), using a modified version of the US Environmental Protection Agency's (USEPA) stressor identification (SI) guidance. In this study, we linked chemical sources and toxic chemicals in the sediment with spatial concentration studies; we also linked toxic chemicals in the sediment with toxicity test results using toxicity identification and evaluation (TIE) studies. We used geographical information systems (GIS) maps to determine sources and to aid in determining spatially integrated inorganic nitrogen (SIIN). The SIIN values of reference and test estuaries were quantified and compared. Using this approach, we determined that toxic chemicals continue to be active stressors in NBH and that a moderate nutrient stress exists, but we were unable to link the nutrient stressor with a source. Also excess sedimentation was evaluated, but it does not appear to be an active stressor in this harbor. The research included an evaluation of the effectiveness of tools under development that may be used to evaluate stressors in water bodies. We found that the following tools were useful in diagnosing active stressors: toxicity tests, toxicity identification and evaluation (TIE) methods, comparison of grain size-normalized total organic carbon (TOC) ratios with reference sites, and comparison of SIIN with reference sites. This approach allowed us to successfully evaluate stressors in NBH retrospectively; however, a limitation in using retrospective data sets is that the approach may underestimate current or newly emerging stressors.


Assuntos
Monitoramento Ambiental/métodos , Invertebrados/efeitos dos fármacos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/metabolismo , Técnicas de Apoio para a Decisão , Estuários , Sedimentos Geológicos , Invertebrados/metabolismo , Massachusetts , Estudos Retrospectivos
7.
Ecol Appl ; 21(6): 2156-71, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21939051

RESUMO

Computed tomography (CT) imaging has been used to describe and quantify subtidal, benthic animals such as polychaetes, amphipods, and shrimp. Here, for the first time, CT imaging is used to quantify wet mass of coarse roots, rhizomes, and peat in cores collected from organic-rich (Jamaica Bay, New York) and mineral (North Inlet, South Carolina) Spartina alterniflora soils. Image analysis software was coupled with the CT images to measure abundance and diameter of the coarse roots and rhizomes in marsh soils. Previously, examination of marsh roots and rhizomes was limited to various hand-sieving methods that were often time-consuming, tedious, and error prone. CT imaging can discern the coarse roots, rhizomes, and peat based on their varying particle densities. Calibration rods composed of materials with standard densities (i.e., air, water, colloidal silica, and glass) were used to operationally define the specific x-ray attenuations of the coarse roots, rhizomes, and peat in the marsh cores. Significant regression relationships were found between the CT-determined wet mass of the coarse roots and rhizomes and the hand-sieved dry mass of the coarse roots and rhizomes in both the organic-rich and mineral marsh soils. There was also a significant relationship between the soil percentage organic matter and the CT-determined peat particle density among organic-rich and mineral soils. In only the mineral soils, there was a significant relationship between the soil percentage organic matter and the CT-determined peat wet mass. Using CT imaging, significant positive nitrogen fertilization effects on the wet masses of the coarse roots, rhizomes, and peat, and the abundance and diameter of rhizomes were measured in the mineral soils. In contrast, a deteriorating salt marsh island in Jamaica Bay had significantly less mass of coarse roots and rhizomes at depth (10-20 cm), and a significantly lower abundance of roots and rhizomes compared with a stable marsh. However, the diameters of the rhizomes in the deteriorating marsh were significantly greater than in the stable marsh. CT imaging is a rapid approach to quantify coarse roots, rhizomes, peat, and soil particle densities in coastal wetlands, but the method is unable at this time to quantify fine roots.


Assuntos
Raízes de Plantas , Solo/química , Tomografia Computadorizada por Raios X , Áreas Alagadas , New York , Tamanho da Partícula , South Carolina
8.
Environ Monit Assess ; 182(1-4): 31-46, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21210212

RESUMO

Vegetation, soils, on-site disturbances, and watershed land use and land cover were assessed at 81 coastal tidal wetland sites using the New England Rapid Assessment Method. Condition indices (CIs) were derived from various combinations of the multi-dimensional data using principal component analyses and a ranking approach. Nested within the 81 wetlands was a set of ten reference sites which encompassed a range of watershed development and nitrogen loadings. The reference set of coastal tidal wetlands was previously examined with an intensive assessment, which included detailed measures of vegetation, soils, and infauna. Significant relationships were found between most of the rapid assessment CIs and the intensive assessment index. Significant relationships were also found between rapid assessment CIs and the developed lands in a 1-km buffer around the coastal wetlands. The regression results of the rapid assessment CIs with the intensive assessment index suggest that measures of vegetation communities, marsh landscape features, onsite marsh disturbances, and watershed natural lands can be used to develop valid CIs, and that it is unnecessary to make finer scale measurements of plant species and soils when evaluating ambient condition of coastal tidal wetlands in southern New England. However, increasing the survey points within coastal tidal wetland units when using a rapid assessment method in southern New England would allow for more observations of vegetation communities, marsh landscape features, and disturbances. Nevertheless, more detailed measures of hydrology, soils, plant species, and other biota may be necessary for tracking restoration or mitigation projects. A robust and standardized rapid assessment method will allow New England states to inventory the ambient condition of coastal tidal wetlands, assess long-term trends, and support management activities to restore and maintain healthy wetlands.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Áreas Alagadas , Oceano Atlântico , Biodiversidade , Conservação dos Recursos Naturais , Humanos , New England , Desenvolvimento Vegetal , Plantas/classificação , Água do Mar/química , Solo/química , Poluentes Químicos da Água/normas , Poluição Química da Água/estatística & dados numéricos , Abastecimento de Água/estatística & dados numéricos
9.
Environ Sci Technol ; 43(17): 6857-63, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19764260

RESUMO

Sediment toxicity identification and evaluation (TIE) methods are relatively simple laboratory methods designed to identify specific toxicants or classes of toxicants in sediments; however, the question of whether the same toxicant identified in the laboratory is causing effects in the field remains unanswered. The objective of our study was to determine if laboratory TIE methods accurately reflect field effects. A TIE performed on sediments collected from the Elizabeth River (ER) in Virginia identified polycyclic aromatic hydrocarbons (PAHs) as the major toxicants. Several lines of evidence indicated PAHs were the major toxic agents in the field, including elevated PAH concentrations in ER sediments, comet assay results from in situ caged Merceneria merceneria, and chemical analyses of exposed M. merceneria, which indicated high PAH concentrations in the bivalve tissue. Our final evidence was the response from test organisms exposed to ER sediment extracts and then ultraviolet (UV) radiation. UV radiation caused a toxic diagnostic response unique to PAHs. The aggregation of these various lines of evidence supports the conclusion that PAHs were the likely cause of effects in laboratory- and field-exposed organisms, and that laboratory-based TIE findings reflect causes of field impairment


Assuntos
Monitoramento Ambiental/métodos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Testes de Toxicidade/métodos , Poluentes Químicos da Água/toxicidade , Animais , Monitoramento Ambiental/normas , Laboratórios , Mercenaria/efeitos dos fármacos , Mercenaria/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/farmacocinética , Reprodutibilidade dos Testes , Rios/química , Testes de Toxicidade/normas , Raios Ultravioleta , Virginia , Poluentes Químicos da Água/farmacocinética
10.
Proteomics ; 5(8): 2018-28, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15852344

RESUMO

We have investigated the use of a variety of different techniques to identify as many proteins as possible in a yeast lysate, with the aim of investigating the overlap and complementarity of data from different approaches. A standard lysate was prepared from log phase yeast (Saccharomyces cerevisiae). This was then subjected to analysis via five different approaches aimed at identifying as many proteins as possible using an ion trap mass spectrometer. The total number of non-redundant protein identifications from each experiment was: 524 proteins by 2-D (SCX/C18) nanoflow liquid chromatography-liquid chromatography tandem mass spectrometry (nanoLC-LC MS/MS (MudPIT)); 381 proteins by nanoLC-MS/MS with gas phase fractionation by mass range selection; 390 proteins by nanoLC-MS/MS with gas phase fractionation by ion abundance selection; 898 proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) separation of proteins, in-gel digestion, and nanoLC-MS/MS of gel slices; and 422 proteins by isoelectric focusing of proteins, in-gel digestion and nanoLC-MS/MS of gel slices. The total number of non-redundant protein identifications in the five experiments was 1204. Combining only the two best experiments, the SDS-PAGE gel slices and the Mudpit, produces 1024 proteins identified, more than 85% of the total. Clearly, combining a Mudpit analysis with an SDS-PAGE gel slice experiment gives the greatest amount of protein identification information from a limited amount of sample.


Assuntos
Eletroforese em Gel de Poliacrilamida , Cromatografia Gasosa-Espectrometria de Massas , Focalização Isoelétrica , Proteômica , Proteínas de Saccharomyces cerevisiae/análise , Fracionamento Químico , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Tripsina/farmacologia
11.
Ecol Appl ; 1(3): 237-248, 1991 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27755773

RESUMO

Three different sizes of marine microcosms were used to study the influence of two features of spatial scale on the chemical fate and ecological effects of the pesticide Kepone. Increasing the size of microcosms reduced the ratio of wall surface area to volume of contained sea water, but increased the number of benthic species due to increasing sample size. Other features of spatial scale, such as water turbulence, water turnover, etc., were held constant. Intact water-column and benthic communities from a north-temperate marine system were coupled together in 9.1-, 35.0-, and 140.O-L containers. Kepone at 20.4 nmol/L was added to these microcosm systems over a 30-d period. A 3 x 2 factorial design was used to discern the effects of size and Kepone. In the absence of Kepone the phytoplankton community exhibited excessive growth relative to the field system for all system sizes. Growth was directly related to the size of microcosms. In addition, the time required to achieve maximum algal biomass was also directly related to size. Release of a growth-stimulating compound(s) from fouling organisms settling on the microcosm walls and size-dependent increases in benthic species provided the best explanation for the observed phytoplankton dynamics. Addition of Kepone indirectly increased phytoplankton densities by reducing through toxic effects, the grazing pressure of zooplankton. Because this effect and mechanism was dependent upon the size of the system, the sensitivity of future perturbation studies may be enhanced by producing similar or related variations in system size. The concentration of Kepone in surficial sediments was also size dependent. Since the average concentrations of Kepone in all water columns were statistically equivalent, these findings were the result of sediment bioturbation coupled with preferential partitioning of Kepone from liquid to the solid, organic phase of sediments. Ecological risk assessments based upon data derived from these systems are therefore dependent upon size. Furthermore, the smaller the size, the greater the underestimate in sediment exposure and the ecological risks of Kepone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA